Powers of Complete Intersections: Graded Betti Numbers and Applications

نویسنده

  • ELENA GUARDO
چکیده

Abstract. Let I = (F1, . . . , Fr) be a homogeneous ideal of the ring R = k[x0, . . . , xn] generated by a regular sequence of type (d1, . . . , dr). We give an elementary proof for an explicit description of the graded Betti numbers of Is for any s ≥ 1. These numbers depend only upon the type and s. We then use this description to: (1) write HR/Is , the Hilbert function of R/Is, in terms of HR/I ; (2) verify that the kalgebra R/Is satisfies a conjecture of Herzog-Huneke-Srinivasan; and (3) obtain information about the numerical invariants associated to sets of fat points in Pn whose support is a complete intersection or a complete intersection minus a point.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost complete intersections and the Lex-Plus-Powers Conjecture

We prove the almost complete intersection case of the Lex-Plus-Powers Conjecture on graded Betti numbers. We show that the resolution of a lex-plus-powers almost complete intersection provides an upper bound for the graded Betti numbers of any other ideal with regular sequence in the same degrees and the same Hilbert function. A key ingredient is finding an explicit comparison map between two K...

متن کامل

Graded Betti Numbers of Cohen-macaulay Modules and the Multiplicity Conjecture

We give conjectures on the possible graded Betti numbers of Cohen-Macaulay modules up to multiplication by positive rational numbers. The idea is that the Betti diagrams should be non-negative linear combinations of pure diagrams. The conjectures are verified in the cases where the structure of resolutions are known, i.e., for modules of codimension two, for Gorenstein algebras of codimension t...

متن کامل

On a special class of Stanley-Reisner ideals

For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where  $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...

متن کامل

A Special Case of the Buchsbaum-eisenbud-horrocks Rank Conjecture

The Buchsbaum-Eisenbud-Horrocks rank conjecture proposes lower bounds for the Betti numbers of a graded module M based on the codimension of M . We prove a special case of this conjecture via Boij-Söderberg theory. More specifically, we show that the conjecture holds for graded modules where the regularity of M is small relative to the minimal degree of a first syzygy of M . Our approach also y...

متن کامل

Ideals containing the squares of the variables

We study the Betti numbers of graded ideals containing the squares of the variables, in a polynomial ring. We prove the lex-plus-powers conjecture for such ideals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005